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Systems of linearized heat-conduction equations with appropriate initial and 
boundary conditions are derived. Based on the solutions of these equations, 
a method is presented for determining intense heat fluxes incident on sur- 
faces of bodies of finite thickness. 

In the design of modern steam generators and shielding articles located in regions of 
very large thermal stresses, centralized heat supply systems and central heating systems 
(atomic power plants, heat and electric power plants, network substations, heat supply sys- 
tems), etc., the problem of determining both steady and unsteady heat fluxes incident on the 
surfaces of individual structures is crucial. A more accurate solution of this problem, 
i.e., a solution of the nonlinear heat-conduction equation with appropriate boundary condi- 
tions, leads to decreased weights and safety factors of individual units and, consequently, 
to increased economic efficiency of equipment manufacture. 

Currently, three groups of methods for solving nonlinear equations can be distinguished: 
i) analytic; 2) numerical; 3) mathematical modeling. 

When analytic solutions can be obtained they are to be preferred when they are simple 
and can be evaluated with a minimum expenditure of working time. 

We present an analytic method for solving nonlinear heat-conduction equations which to 
a certain extent meets these requirements. 

Suppose it is required to solve the nonlinear heat-conduction equation 

po(Co+C~O) O0 a ( ao ) (  0 
aT - Ox (~o+X,o) 

with  boundary c o n d i t i o n s  of the  form 

Ol~=0 = 0 (R~ ~ x ~ Rz), 

Ol.~=~, = % ~) (* > 0), 

OI.=R~ = % (*) (* > 0), 

<x< R2, z>0) (1) 

(2) 

(3) 

(4) 

where G = t -- to, RI is the distance from the point x = 0, Ra is the thickness of the plate, 
and 

(o) = ~o + ~0,  (5) 

c(e)  = Co + G o  (6) 

give the temperature dependence of the thermal conductivity and the specific heat, respec- 
tively. 

If the functions (5) and (6) are inserted under the appropriate derivative signs Eqs. 
(1)-(4) can be written as 

0 (0+ C~ 02 (@q_ %1 
0"~ 2C~ OQ ~a~ Ox --~- 2~o Oz), (7) 

~i_ 0 z / 0 + 2Xo ] T=0 = 0, (8) 
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0 + 

(o+ 
x=R, 'l 2 

" o'- = +' (~) + -2-~o +' ('0 = ~, ('0, (9) 2,0 

2 '00z ) ! .=n ,=q~ . ( ' 0~ -  2-~--o qD, ('0 = , ,  (- 0. ( i0)  

The functions 

+ ( 0 ) - - 0 + -  " O ~, ( i i )  
2~. o 

r  C, 02 (12) 
2Co 

are continuous and differentiable, satisfy the Dirichlet conditions [I], and can be expanded 
in Fourier series in the interval (0, Op) 

E k~O q~(O) = b k sin Op 
k = l  

o o  

E k~__o_e (0 )=  B, sin Op 
k = l  

- - ,  (13) 

( 1 4 )  

0 

2 S p k~O q,(O) sin dO, 
0 

Op 
2 ~ kaO 

B~ - Op ~(0) sin --0~-- dO. 
0 

(15) 

(16) 

Substituting Eqs. (13) and (14) into (7) and formally applying the reduction rule [2] 
reduces Eqs. (7)-(10) to the form 

OT k O2Tn 
- - a o ~  k - - -  a~ ax z 

Thl,=o = O, 

(17) 

(18) 

I 
r.b,=R, - ~, ('0, 

e (k - -  1)! 
1 

ThI,,=R. -- ~2 ('0, 
e ( k - -  1)! 

where 

= _ _  ._ 
& 

Th=bk sin --, 
On 

coskx q - - -  On 1 cos k ~  + __2_2. (kn)  2 ] 
Ct ( 1 ~ - -  cosk~+ 2Co O n [  (k~) 2 

and e is the base of natural logarithms. 

(19) 

(2o) 

(2z) 

(22) 
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TABLE i. Values of Coefficients a k (Op = 600"C) 

k a h k a h k , a h k ~k  

0,93434 
0,89236 
0,89694 
0,89236 
0,89394 

6 0,89236 ] II 
0,89314 12 
0,89236 ! 13 
0,89289 14 
0,89236 15 

0,89271 
0,89236 
0,89262 
0,89236 
0,89253 

16 
17 
18 
19 
20 

0,89236 
0,89245 
0,89236 
0,89244 
0,89236 

TABLE 2. Temperature Distribution of a Plate as a Function 
of Time and Position, ~ 

�9 c, s e e  

0,01 
0,02 
0,03 
0,04 
0,05 
0,06 
0,07 
O, 08 
O, 09 
0,10 
0,11 
0,12 
0,13 
0,14 
0,15 
0,16 
0,17 
0~18 
0,19 
0,20 
0,21 
0,22 
0,23 
0,24 
0,25 
0,26 
0,27 
0,28 
0,29 
0,30 

R, mm 

4,5312 
17,6043 
;M ,9976 
54,3102 
74,2323 
94,0390 

113,3391 
131,9357 
149,74~; 
1(;6,7560 
182,9~59 
198,4782 
213,2840 
227,4578 
241,0525 
254,1187 
266,7029 
278,8475 
290,5906 
301,9664 
313,0051 
323,7338 
334,1767 
344,3551 
354,2881 
:363,9927 
37:3,4843 
382,7765 
391,8817 
400,8110 

0,9120 
6,2493 

15,6937 
27,8479 
41,6127 
56,2270 
71,1849 
86,1590 

100,9440 
115,4163 
129,5073 
143,1841 
156,4372 
159,2715 
181,7010 
193,7444 
205,4229 
216,7586 
227,77;~ 
238,4881 
248,9227 
259,0956 
269,0239 
278,7232 
288,2079 
297,4912 
306,5852 
315,5009 
324,2481 
332,8363 

O, 1376 
1,9182 
6,3866 

13,2755 
22,0937 
32,0196 
42,8785 
54,2441 
65,8712 
77,5854 
89,2654 

100,8293 
112,223:3 
123,4142 
134,3831 
145, 1210 
155,6259 
165,9003 
175,9498 
185,7819 
195,4051 
204,8282 
214,0606 
223, 1112 
231,9887 
240,7017 
249,2579 
257,6650 
265,9300 
274,0595 

0,0013 
O. 113,1 
0,3752 
2,3903 
5, 1075 
8,8931 

13,6243 
19,1476 
25,3092 
31,9698 
:19,0094 
46,3280 
53,8442 
61,4928 
69,2221 
76,9915 
84,7697 
92,5324 

100,2612 
107,9425 
115,6659 
123,1240 
130,6117 
138,0254 

, 145,3629 
152,6230 
159,8053 
166,9099 
173,9374 
180,8886 

Thus, we obtain a system of linear equations which is readily solved. Taking the 
Laplace transform, the expression for the transform of T k is 

i I sh, s I 
T-~n e ( k - - 1 )  T ~A(s) V / s + ~ z ( s )  s ' �9 

and after taking the inverse transform and differentiating with respect to x, we find 

(23) 

OTh i = _ _  1 1 

Ox  i,=0 e ( k - - l ) !  ( ~ ( ~ ) - - ~ z ( ' O ) R 2 - - R  ~ - -  

1 �9 2R~ + 2RzR, - -  R~ 
-- e (k  . . . .  i-)--i- $i  (x) 6ao% (Rz -- RI) -- 

i ,~ (~) R~- 2R2~, - 2R~ 
e (k - -  1) ! 6aoak (Rz - -  RI) ' (24) 

if we limit ourselves to first-order derivatives of ~,(z) and ~=(T). It should be noted 
that taking account of second derivatives of these functions does not change the result sig- 
nificantly since in a short time interval AT these functions are commonly taken as linear. 
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Fig. i. Results of reconstruction of heat fluxes: curve i by 
Eq. (29); 2, 3, 4, 5 by (27) with R, = i mm and Ra = 5 mm; 
R, - 2 mm and Ra - 5 mm; R, = 1 mm and Ra = 3 mm; R, " 3 mm and 
Ra ffi 5 mm, respectively, q, kW/cma; T, sec. 

In most experimental studies, detectors for sensing heat fluxes are made of copper, for 
which Eqs. (5) and (6) have the form 

X (O) = 390 -- 0.06170, (25) 

c(0)=387+0.08700.  (26) 

Using the data in Table i the values of a k for Op - 600~ were determined. This value 
of 0p was taken as the maximum temperature at any point x in the time interval under con- 
sideration. This ensures the convergence of the Fourier series to the functions expanded. 
Table i shows that u, = 0.93434 differs from all the other values of Uk by about 5%, and 
they in turn differ so slightly from one another that their average ak " 0.89280 can be taken 
for all k �9 I. This procedure eliminates the st-,mation over k and makes it possible to write 
the expression for the heat fluxes in the form 

1 + 
q ('0 = ~,o (~ ('0 - -  ~. ('0) ~ ,_  ,~---~ 

+ ~ i ( ' ~ )  R2+2R2R,--R~ e - - 1  + 
6aoe(R,-- R,) "--%1- § a----~ 

(27) 

The calculation of heat fluxes by Eq. (27) requires the values of the functions ~,(T), 
~a(T), ~,'(T), and ~2'(T), which are ordinarily taken from experiment. However, another 
method can be used. In the present paper we solve the nonlinear heat-conduction equation 
(i) numerically with boundary conditions of the form 

01~=o = O, (28) 

00 ~=o -- e-6~)' (go -k XzO) ~ = --qo(1 (29) 

Olx=R = 0. (30) 

In Eq. (29) we set qo " 3"107 W/m 2 and 6 ~ 31.54 sec -I, which corresponds most closely 
to experimental conditions [3]. 

Table 2 gives the calculated temperature distribution for a copper plate of thickness 
R = 50 mm. By using this table, boundary conditions (3) and (4) can be chosen for various 
values of R, and Ra to solve the inverse problem of determining heat fluxes. If the results 
obtained by Eq. (27) are close to the conditions (29), the proposed method is accurate and 
canbe used to calculate heat fluxes. 
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Figure 1 shows the results of such a reconstruction of heat fluxes using Eq. (27). 
Curve 4, calculated for R, = i mm and R2 = 3 mm, measured from the surface of the plate 
x = 0, practically coincides with the reference curve I constructed by using Eq. (29). The 
agreement at early times is somewhat worse for curves 2, 3, and 5 calculated with R, = i mm 
and R~ = 5 mm, RI = 2 mm and R2 = 5 mm, and R, = 3 mm and R2 = 5 ram, respectively. It is 
clear that this can account for the less accurate approximation of the temperature distribu- 
tion at x = 0. For r > 0.i sec, however, all the results are close, and the proposed method 
of calculating heat fluxes can be used in practice. 

NOTATION 

9,  density, kg/ma; C, specific heat, j/kg.~ T, time, sec; ~, thermal conductivity, 
W/m,~ x, running coordinate, m; t, temperature, ~ to, initial temperature, ~ ao, 
thermal diffusivity, m=/sec; q, heat flux, W/m =. 

. 

2. 

3. 
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PROPAGATION OF HEAT WITH A VARIABLE RELAXATION PERIOD 

P. V. Cherpakov UDC 532.24.02 

We present an exact solution of the hyperbolic heat-conduction equation for a 
variable velocity of heat transport. 

According to the hypothesis of the finite velocity of heat transport developed by Lykov 
[i] we have a hyperbolic heat-conduction equation 

t 02U OU = a  2 0 z u  (i) 
r Ot 2 ~" 0-~ Ox - - ~ - '  

where t r is the relaxation period in hours, a 2 is the thermal diffusivity, and Wq = /~7~r 
is the velocity of propagation of heat. 

If t r and a 2 are constants, Wq is a finite velocity. Under these assumptions we solve 
certain problems related to Eq. (I) which can be found in [2-4]. 

Norwood [5] investigated variable values of tr, and Samarskii and Sobol' [6] used a 
computer to study temperature waves. 

We assume that t r varies linearly with the time. This case leads to an exact solution 
of Eq. (i) for many boundary-value problems. 

We set 

where b is a positive constant. 
familiar form 

= 2t + b, (2 )  

Then the substitution ~2 = 2t + b reduces Eq. (i) to the 
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